![]() |
SmartSpectra C++ SDK
Measure human vitals from video with SmartSpectra C++ SDK.
|
Functions | |
| Dict[str, Any] | load_metrics_summary (Path file_path) |
| Tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]] | extract_series_data (Dict[str, Any] series_dict, str series_name) |
| npt.NDArray[np.float64] | compute_timestamp_diffs (npt.NDArray[np.float64] timestamps) |
| npt.NDArray[np.float64] | compute_zscore (npt.NDArray[np.float64] values) |
| None | plot_metrics (Dict[str, Any] summary, Optional[str] session_id) |
| int | main () |
Metrics Plotting Utility This script loads and visualizes metrics data from the JSON summary file produced by the redis_ipc_metrics_saving_client.py script (using MetricsCollector). Plots: 1. Edge EDA (electrodermal activity) 2. Edge upper breathing trace 3. Core phasic blood pressure 4. Core upper breathing trace 5. Combined z-scores of all metrics 6. Edge upper breathing timestamp differences All plots are displayed as subplots in a single figure.
| npt.NDArray[np.float64] plot_metrics.compute_timestamp_diffs | ( | npt.NDArray[np.float64] | timestamps | ) |
Compute differences between consecutive timestamps
| npt.NDArray[np.float64] plot_metrics.compute_zscore | ( | npt.NDArray[np.float64] | values | ) |
Compute z-score normalization of values
| Tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]] plot_metrics.extract_series_data | ( | Dict[str, Any] | series_dict, |
| str | series_name ) |
Extract timestamps and values from a series in struct-of-arrays format
| Dict[str, Any] plot_metrics.load_metrics_summary | ( | Path | file_path | ) |
Load metrics summary JSON file produced by MetricsCollector
| None plot_metrics.plot_metrics | ( | Dict[str, Any] | summary, |
| Optional[str] | session_id ) |
Create a figure with all metric plots as subplots